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Abstract—Mass transfer between a turbulent fluid flow and a flat smooth wall with a first-order chemical
reaction on it has been investigated. An extreme case of an infinitely high reaction rate (constant
concentration of passive admixture on the wall) has been analysed.

Three possible cases are considered consecutively. For very short plates which cannot be described by the
boundary-layer approximation, a computer solution has been obtained by the finite difference method. This
solution completely allows for both the edge (longitudinal molecular diffusion of a passive admixture) and
surface (finite rate of a chemical reaction) effects which are rather essential for small-length plates. For those
plates which can be interpreted by the boundary-layer approximation with the neglect of the effect of
turbulent mass transfer, the analytical solution to the problem has been derived. The numerical data are
compared with those obtained by the method of the equally accessible surface and in the boundary-layer
approximation. As a result, the lower region limit of the plate sizes can be established where the edge effects
may be neglected. These results may be directly applied to the theory of electrodiffusional and thermal (with
coatings) small-size film sensors, designed for measuring local characteristics of friction, and heat and mass
transfer to a smooth solid wall in a fluid flow.

Considering long plates for which turbulent mass transfer is of importance, a simple approximate solution
of the problem is obtained. The numerical parameters involved in this solution are thus chosen to fit the
asymptotic results obtained close to the leading edge of the plate and far from it. These results make it
possible to determine the mass-transfer entry region in the arbitrary cross section channel and to suggest
simple formulae for calculating the local and channel length-averaged mass transfer intensity in the entry

region. These formulae are checked by the reported experimental data.

NOMENCLATURE K,;, tensor components of eddy
C(/3) k50 5 diffusivity ;
= e — 13 pp2 i .
3 k, surface reaction rate;
3/3r2/3) U .
) A plate length or equivalent channel
_ l:( 3) KL'3: diameter;
i/ 3T(2/3) I, stabilization length for Nu;
thermal diffusivity ; L, =1, /Pr= lu,/\/E;
2r G\"! L,,  stabilization length for (Nu) :
={1+ % % Rijs exponept at the first term of the Taylor
] expansion of K;; with the factor b;;
first coefficient of the Taylor different from zero;
expansion f)f K n, exponent at the first term of the
first coefficient of the Taylor Taylor expansion of K, ;
expansion of K, ; r,  chosenaccuracy [%];
passive admixture concentration; S, = J, L' normalized concentration
=9bl, ; gradient at the plate surface;

tube diameter;
molecular diffusivity ; — .. .
Green function of equation (6); o = \/Tw/ p, friction velocity;

u, velocity at the point considered :

k s Uy, Uy, instantaneous components of the
=0 Pre=; velocity vector in x- and y-directions;
A X, longitudinal coordinate relative
plate width; to t%:e leading edge;
vD o g ecees
~ (X, 0)’ xu, . . . .
cou, Oy X, = ——, dimensionless longitudinal
local mass flux on the plate surface; vD
o coordinate ;
= kfu, \/ Pr: ¥ normal-to-the-wall coordinate ;
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y (BT
’ 9 x !’

dimensionless normal-to-the wall

coordinate;
5, =y./ex)
9 X 1/3
o, e
<L2 l)
B,7, dimensionless quantities defined
by formula (40);
T, Euler’ gamma-function;
&(x), concentrational boundary-layer
thickness;
Co—¢C . .
0. =2 , dimensionless concentration;
Co
U, dynamic viscosity
v, kinematic viscosity;
X . .
g, =7 dimensionless longitudinal
coordinate;
0, density;
Ty wall shear stress;
o, confluent hypergeometric function;
w, constant defined by formula (43);
ol
Nu, = ]L, Nusselt number ;
Co
Pr, = v/D, Prandtl number ;
Re,  ul/v, Reynolds number.

Subscripts and superscripts

'

, fluctuation (the difference between
the instantaneous quantity and its
corresponding mathematical
expectation);

w, wall conditions;

-, mathematical expectation ;

length averaging;

v,  stabilized conditions;

+,  quantity dimensionalized by the wall

parameters u, and v;

0, infinity conditions.

1. STATEMENT OF THE PROBLEM
CONSIDER a rettangular plate h wide in the field of
uniform shear stresses. Let the plate length in the flow
direction be !« h, so that the edge effects in the
direction perpendicular to the flow can be neglected.
Assume that in a fluid flow around the sensor thereis a
uniformly distributed passive (i.e. not affecting the flow
dynamics) admixture. The x-axis is along the flow,
while y is normal to the wall. Then, the steady-state
diffusion equation is of the form
¢ 8wy 0 —— 0 —

ﬁ‘i—ﬁ) P. (uc’) P (uy,e) (1)
where prime- indicate fluctuations, ie. the difference
between the instantaneous and their corresponding

oc
iy) —= D(
0x
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mean values. The concentration of a passive admixture
c(x, y) at a large distance from the plate is constant

“(x,00) =co; ¢(—00,p)=co (2)

and on the plate surface the first-order reaction takes
place
0 at x<0 or x>

oc
D— ’0 — 3
6y(x ) {kE(x,O) at 0 x< 1 3)

At large values of the reaction rate constant (k — o),
the latter equation transforms into an ordinary boun-
dary condition for the constant wall concentration ¢ (0
< x< L0)=¢,. At Pr> 1, the resistance to mass
transfer is completely due to the viscous sublayer of the
turbulent boundary layer, for which the velocity
distribution can be approximated by the linear func-
tion
i (y) = yui/v. )
Equation (1) with boundary conditions (2) and (3)
describes a broad range of problems which are impor-
tant not only for chemical engineering but also for the
theory of film (thermalt and electrodiffusional) sensors
being nowadays widely used in practice. For the
thermal film element, k entering into equation (3)
represents thermal resistance of the insulating coating
of the heated film which is an unseparable part of the
sensor when used in fluid flows. For the electro-
diffusional sensor, the constant k is the rate of the
electrochemical reaction of workingions on the sensor
surface. Here, the effective value of k may also show an
existing state of the sensor surface. The use of bulky
installations with a large amount of electrolyte em-
ployed for several days (sometimes even weeks) pro-
hibits such cleaning of the sensor surface that allows
necessary calculations relied only on the kinetic laws of
electrochemical reaction and the laws governing ion
transfer through the sensor boundary layer. One can
suppose that because of incomplete cleaning of the
sensor, a uniform layer exerting constant resistance to
mass transfer is formed on its surface. An ion flux
through such a layer is proportional to the difference of
concentrations at both boundaries of this layer. It is
readily seen that this extra resistance effect can be
easily allowed for by introducing a certain fictitious
rate of the electrochemical reaction different from the
one characteristic of purely diffusional overstress con-
ditions. Later on, for the sake of clarity, we shall speak
of the electrochemical diffusional sensor, for the oper-
ational principles of the diffusional sensor and
constant-temperature thermal film element are practi-
cally identical.

+Further arguments are only true of the thermal film
element of such a small extent in the flow direction that the
thickness of the thermal layer formed on its surface does not
exceed that of the viscous sublayer of the turbulent boundary
layer (i.e. of the sublayer where the velocity distribution obeys
equation (4) with sufficient accuracy). It should be added that
the heat is considered here to be passive admixture (i.. only
low-intensity heat fluxes are analysed). It is supposed, as
usual, that the mechanism of turbulent heat transfer is exactly
the same as that of passive admixture.
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For the last two decades, the theory of these sensors
has been extensively developed by German [1,2],
American [3-7], Soviet [8-10], French [11] and
Japanese [12, 13] scientists. However, in nearly all of
these works the diffusional sensor theory is studied in
the frame of the boundary-layer approximation, and
the rate of the appropriate electrochemical reaction is
considered infinitely great.

In respect of such a statement of the problem, the
following remarks can be made. The sensors of small
extent in the direction of the averaged flow, most of all,
satisfy the aims of local measurements of the
boundary-layer characteristics. Still more important is
the reduction in the size of the sensor designed for
determining the fluctuation characteristics of the
boundary layer, when the sensitivity of a measuring
element decreases sharply with the increase of its size
[9]. It is known, meanwhile, that the boundary-layer
approximation is too crude for the study of a real
concentration distribution near the sensor edges, i.e. in
the region of a sharp change in wall conditions, where
the molecular diffusion in the directions parallel to the
wall may bring about an appreciable error in the
calculations based on this approximation. This extent
of the error is most significant for small-size sensors.

To the above remarks the following should be
added. As the electrode surface is not equally ac-
cessible and the reaction rate is finite, the con-
centration of reacting charged particles on the sensor
edge surfaces ranges from the initial value to zero; that
is, some portion of the electrode is not polarized. Since
the effect of the finite reaction rate is also most
pronounced near the diffusion sensor edges, these two
effects should be considered jointly.

In the literature available, the estimates were made
only of the above effects taken separately. The numeri-
cal analysis of the edge effects for the small-size
completely polarized sensors was performed by Ling
[4], while the concentration distribution along the
sensor surface was investigated within the framework
of the boundary-layer approximation in [2, 10].
Neither of these effects was regarded at all in analytical
studies of the sensitivity of the electrochemical sensor
to the fluctuations in the viscous sublayer of the
turbulent boundary layer [7,9-11, 13].

We shall therefore make first a detailed con-
sideration of steady-state mass transfer between a
turbulent fluid flow and a small-size plate with the
first-order chemical reaction on the wall. In this
case, because of the edge effects, the boundary-layer
approximation is not applicable (one cannot assume
that #%¢/0x?= 0) but, on the other hand, the layer of
diffusional disturbance produced by the plate is so thin
that the effect of turbulence in the viscous sublayer can
be neglected.

[0(u,c')/ox = 0 and d(u,c’)/dy = 0].

All the results obtained with this assumption may be
naturally applied to a laminar flow.

Then we examine long plates, for which the effect of
turbulent fluctuations in the viscous sublayer of the
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turbulent boundary layer starts to show itself ap-
preciably in the bulk of the flux to their surfaces, but
the edge effects are negligible.

2. CONCENTRATION FIELD AND MASS FLUX
TO A SHORT PLATE
In the conditions considered, the concentration field
near the plate is determined by the equation

uz o 0% 0% s
v ax (6x2 * 6y2) )
with boundary conditions (2) and (3).

The problem has been solved on the computer by
the successive iteration method applied earlier By Ling
[4] for k = co. The range of 5 < L < /5000 and 0.01
< k < oo is analysed. The numerical results are given
in Figs. 1-4 and Table 1.

The lines given in Fig. 1 represent constant con-
centration in the vicinity of plates of constant dimen-

sionless length (L = ,/50) calculated at different dimen-
sionless rates of a surface reaction 0.01 <k < co. The
boundary of the diffusional layer 6 =001 is also
shown in this figure. It is clear that the thickness of the
thermal boundary layer is finite at the leading edge.
However, the effect of the longitudinal molecular
diffusion provoking a change in concentration before
the plate becomes less significant with the decrease of
k. Behind the plate, a significant “diffusional wake” is
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FIG. 1. Concentration field close to a short plate (L = ,/50)
at different dimensionless rates of surface reaction K.
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observed which may cause introduction of important
corrections into the correlation measurements perfor-
med with film sensors [ 12]. It is worth noting that even
at large relative rate of a surface reaction, & = 10, the
electrodiffusional sensor is incompletely polarized (0,
# 1) overits length. This situation is illustrated in Fig.
2 plotting the distribution of dimensionless surface
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Fi1G. 2. Distribution of wall concentration over the plates of
different length. Solid lines. numerical results; dashed lines,
calculations in the boundary-layer approximation.

concentration over the different-size plates, 5< L
< x. One can readily see from these plots that
polarization of the electrodiffusional sensor increases
with its length and k, which agrees with the existing
idea that the importance of the edge effects should fall
as fast as the length of film sensors increases. The
concentration field close to the centre of a fairly large
plate is believed to be well determined by the
boundary-layer approximation

ER o
- ¥ (,\(' = D by '(2' (6}
v Ex ey
at boundary conditions
Clx, wy=co: 0, vY=cg:
D (x> 0,0) = ké(x > 0.0). )
oy
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Define the Green function F(x.y,¢) of differential
equation (6) by solving it under the boundary con-
ditions with a single surface concentration jump at the
point & = x

I at O<x<i
Cplx) = ) (8)
0 at ¢E<x<l
and c(x, ) = L
It is evident that in this case
* jaby ;
I I A
. e d{
'é/3) o )
F(x,y,&) = )

at S<x<x!
at O0<x< i

Using the superposition principle for approximating
an arbitrary distribution function, c¢,(x), we can
represent the concentration field, ¢(x, 1), in the vicinity
of the sensor as the Duhamel integral

~l

Fix, y. O de, 48,

]

(‘(X’ "‘) = (I{}}

o

where the integral equation for the ion concentration
distribution on the electrode surface under the con-
ditions considered will be of the form [14, 15]
T(4/3 : " de,/dé
@ )(guD)‘”/tiﬁ‘ = | g

kewl¥) =5 Jo ZEy

(an

An approximate solution to equation (11) is given in
[10]. The second-kind Volterra integral equation can
be exactly solved by the Laplace transformation. It can
be conveniently expressed in terms of the confluent
hypergeometric functions
. X ( - 1 )m +1
0,E&) = m; r(.’ﬁﬁ
3

(Acvl,r&)m

exn( 43y o AOT
l—exp(—A°E)+ Fam)

i

X p(1,4: =A%)
(4%

$i— 4%,
iy hai=A40

(12}

Hence the sensor length-averaged surface con-
centration can be easily found

exp(—A%)—1 A

. T. 43
(B =1+ Ve 1“(7;’3)45‘1’3" 4%
AZ
e (LR - A% (13
l"(8/3)(/)( 3 A%). (13

The expressions obtained are convenient 1o estimate
the asymptotic behaviour of the solution at 43¢ » 1
and A%f « 1 but are of little use for 4°¢ ~ 1. At 4%
~ 1, the approximate method of the equally accessible
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Table 1. Comparison of the results obtained (a) by the computer ; (b) by the boundary-layer approximation ; (c) by the method
of equally accessible surface

5 /30 10 /500 /5000
L
K B> (8> {0, {8 0, (8 (B> {8 8> (5
a 1000 0893 1000 0871 1000 0852 1000 0820 1000  0.809
b 1000 0807 1000 0807 1000 0807 1000 0807 1000 0807
¢ 1000 0807 1000  0.807 1000 0807 1000 0807 1000 0807
a 0949 0852 0955 0832 0961 0816 0971 0799 0981 0793
10 b 0955 0773 0960 0777 0964 0781 0972 0787 0981  0.793
¢ 0955 0762 0960 0768 0964 0772 0972 0779 0981 0787
a 0661 0572 0690 0594 0713 0613 0769 0643 0834  0.680
1 h 0690 0520 0711 0555 0732 0578 0778 0627 0836  0.680
¢ 06901 0527 0715 0547 0737 0566 0785 0607 0841 0656
a 0159 0143 0178 0157 0199 0172 0246 0211 0327 0277
0.1 b 0.164 0143 0183 0157 0201 0172 0248 0212 0327 0278
¢ 0190 0139 0203 0152 0228 0166 0278 0204 0369 0276
a 00185 00167 00211 00187 00243 00207 00321 00272 00456  0.0393
0.01 b 00193 00168 00217 00188 00243 00210 00315 00273 00456 00395
c 00232 00167 00260 00187 00291 00209 00377 00272 00543  0.0391

surface [ 15] may be used, that gives
r(2/3)4¢'"

YT TTERAET "
3
O =1=ar@m) T 420
3

In Fig. 2 the dotted line shows the calculation results
by formula (12). As one should expect, this solution
describes poorly the real concentration field in the
immediate vicinity of the leading and trailing edges,
but agrees well with the numerical calculation for the
middle area. As foliows from the general boundary-
layer theory, the width of this area increases with the
plate length. It is worth noting that the existing
difference between the analytical and numerical solu-
tions, i.e. smaller predicted values of 8,, at the leading
edge and larger ones at the trailing edge, makes it
possible to assume that the plate length-averaged (6,,>
obtained from an exact calculation and in the
boundary-layer approximation should not severely
differ even for relatively short sensors. Table 1 shows
that this is really true: even for the shortest plates (L
= 5), the difference does not exceed 8%.

The longitudinal molecular diffusion has a more
essential effect on the surface concentration gradients.

As follows from Leveque’s solution [16], the
boundary-layer thickness at the leading edge is zero
and the concentration gradient is then governed by

_A
T T(/3)
tends to infinity at X — 0 and decreases monotonically

with increasing X. The numerical results giving a real
picture of a normalized concentration gradient distri-

JvD &
JW(X)=C—Vua—‘ x> 0,0) X173, (16)
[+ 3

bution along the sensor length are presented in Fig. 3
where the dotted line shows the results obtained by the
boundary-layer approximation.

The computer calculations (Fig. 4) indicate that at
the leading edge of the plate, the concentration
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F1G. 3. Distribution of dimensionless wall concentration

gradients over the plates of different length. Solid lines,

numerical results ; dashed lines, calculations in the boundary-
layer approximation.
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F16. 4. Dimensionless mass flow close to the leading edge of
the plate. Solid line, calculation in the boundary-layer
approximation.

gradient assumes a constant value which depends on
the rate of a chemical reaction. For the finite K, this
follows directly from boundary condition (3). Unlike
equation (16), at K = oo, in accordance with the

numerical calculation for _xu,/V@ < 0.02, we have

JVD @
2 (x,0) =240
Colt, €V

(17)

Such a difference does not affect the total mass flux
appreciably but is of importance for the theory of film
sensor measurements of the boundary-layer fluc-
tuation structure. There is good reason to believe that
the structure of the concentration field near the leading
edge (being here of the smallest thickness and, hence, of
the smallest persistence) affects decisively the sensor
characteristics in the high-frequency region.

An increase in the concentration gradients near the
trailing edge of the sensor is of greater significance.
Following the boundary-layer approximation, at finite
K for the normalized concentration gradient on the
plate surface, we have

S=L"3J, =LBK({I-0,). (18)

At low K. a short electrodiffusional sensor is not
practically polarized at all (9,, ~ 0),so that § = LK,
and does not change along the plate. In this case, the
integral mean (5>

*L
¢Sy = L} JX)dX = LK (1-¢8,>){19)

JO
is very accurately described not only by the boundary-
layer approximation but also by the method of the
equally accessible surface even for short plates. This
should not be astonishing if you remember the above
situation of decreasing longitudinal concentration
gradients with K and the contribution of longitudinal
molecular diffusion. Also note that at K < 1, the

+ The latter result is inconsistent with the results of some
recent analytical studies [17, 18]. The reasons for such a
deviation are analysed in detail in [19].
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theoretical results for the leading edge region lie above
the computer data, while the picture is reverse for the
trailing edge region. One can therefore suppose that
the sensor integral means should not differ con-
siderably. The data summarized in Table 1 support
this idea. For K = 0. the deviations (neglecting the
regions of X < 107?) are of a constant sign, and the
difference in the results becomes more noticeable. At K
— o¢, we have the equation (§) = ;@2 I'(4/3)

= 0.807, by virtue of formula (16}.

For estimation of the appropriate correction for the
normalized dimensionless surface concentration gra-
dient, Sy, predicted by the boundary-layer theory, the
approximation equation

(S =S+ ep( - )00
can be used.

For K < 0.1, the correction is insignificant at any
practically interesting L. The accuracy of the approxi-
mation suggested is 2% in the whole range of L and K.

The local and integral dimensionless mass-transfer
coefficients on a short plate can be easily estimated by
the value of the normalized surface concentration
gradient

Nu=SL*3  (Nu) =(SYL**. (21

3. MASS TRANSFER TO A LONG PLATE

Considering long plates, we should treat incomplete
equation (1), provided that 3% /dx? = 0, because in
this case the edge effects of molecular conductivity
should not, as is shown above, play any role. To solve
the equation derived, different ways of its closing are
used, the simplest of which, assuming a linear re-
lationship between the turbulent admixture flux and
mean concentration gradient of admixture u¢’, u,c’,
goes far back to Boussinesq [ 20]. In a general aniso-
tropic case, this assumption is of the form

Uy, ¢ = - i S
X XX 9.\‘ Xy (qu
- -
— o o
N
e = —~K, —~—K, —. (22)
y ¥ Ay »y oy

where the eddy diffusivity tensor coefficients (K;))
depend, in general, on the x,y-coordinates. In the
majority of the published works using this approach, it
is supposed (usually without any grounds) that x, v are
the major axes of the tensor K. ie. K, = 0. K, = 0.
Here either K, = 0 is assumed or the estimate of K
= K, is introduced. The assumption on the diagonal
nature of the turbulent diffusivity tensor relies on the
situation that the directions of the axes are determined
by the conditions of a hydrodynamically stabilized
tube flow. This argument, howes er, is not strict [21].
Indeed, in line with [21], we may show, for example,
that the longitudinal component of turbulent mass
transfer due to the transverse concentration gradient is
different from zero (ie. K, # 0).
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Let us now assume that the components of the
tensor K;; depend only on the radial position and do
not depend on the longitudinal coordinate. This
hypothesis can be maintained by a decisive role of flow
dynamics, which in this case is believed to be com-
pletely stabilized, so that the tensor components of the
eddy momentum diffusivity (i.e. eddy viscosity tensor)
are independent of x. In the depth of the viscous
sublayer of the turbulent boundary layer, where the
total resistance to mass transfer is concentrated at
Pr > 1, the tensor components of the eddy diffusivity
are described, with appropriate accuracy, by their first
terms of the corresponding Taylor power expansion

yu,\"™
K;j=vbyl - ) .
N

Using the continuity equation, we can show that
and n,, > 3,whilen,,and n , > 2. The valueofn, = n
seems to be of special importance. Based on the
analysis suggested in [22]. assume that n = 3.

In view of the above, equation (1), when expressed in
terms of the dimensionless variables of the boundary-
layer theory,

Co—C X L2 1\V'By 1y
0= =T, Y=(—=] T=-%(24
Co ¢ l <9 x) [ al( )

23)

takes the form

220 ) a0
14+ CEYH)— +3Y2(1 + CE)— — 9EY —
(1+cé )6Y2+ (1+ é)aY T

K, K,\[&0 Y &0 1 a6
ol 57+ AV ar AVE  ar Ay
DD (6gﬁ) 3EaY? 3¢ GY)

3(K,/D) (20 Y 00
P (Gt

oE  3Eay
(820 2y % +Y2 ale+5 Y a6
__a —— ————  —— —— —— —
0E2 3E AEAY 92 3Y? 9 ¢§? ay}
K
1+22) =0, (25
x( + D) (25)

For a long plate, « = 3/9X/L « 1, and the analysis
may therefore be restricted to the a-zero approxi-
mation

1+ % Xy? 626'+3Y2 1+ o X a0
VPr )3Yz \/P‘r )8Y
a0
—9XY — =0, (2
YEX , (26)
0(—,Y)=0; 0(X,0)=0;
a0
— (X
aY( ,0)
_JK/9X[0(X,0)-1] at 0< X <L 27)
0 at X <0,X> L.

It is quite obvious that equation (26) includes only one
tensor component of the eddy diffusivity K ,, which can
be estimated with an appropriate accuracy [22].
Things are more intricate with other components K,
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K,, and K, no information being available in
literature on their behaviour in the viscous sublayer of
the turbulent boundary layer.

With regard for equation (26), the limit laws of the
local mass transfer intensity on the plate are easily
obtained for short and long distances from the leading
edge of the plate.

In the first case discussed in detail above, the effect of
turbulent mass transfer can be neglected. According to
formulae (12), (16), (18) and (21) at finite k

ki 3/9
Nu=—|1--Y"_KxU4 .
“ D[ T23) +
ki 9 L.k ]
b1 3R 13
D[l F(2/3)Pr - +J (28)
and
Nu = i/g L = {/3 L Pri® (29)
r(1/3) x1*  r11/3) xy?
atk = oc.

For X » 1, when the concentration field close to the
plate varies slightly along x, equation (26) assumes the

form
o 9 06"
—{ (1 XY3|—|=0.
BYK +~/Pr )6YJ °
Its solution at boundary conditions (27) has the form

1 [1_3\/§J“ﬂ\/ﬁy, du }

0—
1+3ﬁi_[ﬁ 2r Jo 1+u?
2n G

(30)

(31)

Hence, for the flow region analyzed, we obtain at finite
k

%%hPrm

Nuy=———+— (32)
- 3./3%b
2n G
and atk = oo
3./3
Nu, = %i/}?zmrm. (33)

To solve equation (26) at any x, the approximate
moment method [23,24] is used. This method has
been successfully applied for deriving integral momen-
tum and energy relationships (see, for example [25]).
Require that equation (26) be “on the average”
satisfied. With this end in view, rewrite equation (26) of
the a-zero approximation and boundary conditions
(27) as follows

0 _ 3 f(L BTy
Ve x,  dy.|\Pr y+) oy, | (
I k
(i(x+,oo)=0;——(x+,0)=;~Pr[0(x+,0)—1].

0y +
(35)
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After substituting the variable z = y, /5(x , ) assume
that dimensionless concentration profiles of passive
admixture may, with sufficient accuracy, be considered
affine-similar in z [23, 24]. Then an ordinary differen-
tial equation of the first order with respect to the
boundary-layer thickness d(x,) and of the second
order with respect to 6(z) is of the form

’
)

J 0
Pré%é +(322 ~07+ z3)bPr53 +1=0

y
(36)
with the boundary conditions
0l ) = 0, 0(0) = 5§pr[0(0)— 11 67
3(0)=0 at k—o. (38)

Here the point and prime mean differentiation in x
and z, respectively. On integrating equation (36) from
0 to 1 and setting the expression obtained equal to
zero, we arrive at the equation

yPré*5+ BbPré® +1 =0 (39)
where
A J‘ ()
p=— ¢ dé, B= 3| E2-—de-1
Joi TR A T
(40)

Equation (39) is an approximate correlation replac-
ing original equation (26). Naturally, the agreement
between the below results and accurate correlations is
controlled by the parameters y and f3,i.e. by the proper
choice of the function 6(z). The previous formulae,
being asymptotically correct, can be of use here.
Indeed, the comparison of the relevant asymptotic
expansions of the approximate solution with the
accurate formulae permits not only the required
relationships between the constants y and 8 to be
obtained, but also the choice of 8(z) to be estimated.
Thus, we can get an idea on the accuracy of the
approximate solution and, thereby, eliminate, to a
certain extent, the most essential imperfection of the
approximate methods.

The solution of differential equation (39) takes the
form

3 BhPrGL) 2
\ “utdu
J . — = B bx .. (41)
3 pepro) 1 —u )
It is easy to see that in our notations
3/BbPré(x,) = Nu, /Nu(x,). 42)

By using equations (28), (32) and (41), one can find

TNe N dy [fb B-1— 14 2 G
- ='"~bhx,, =1+———.
| NCEI

(43)
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The upper limit of the integral tends to zero at k
— oo, i.e. 8(0) - 0 in accordance with equation (29),
but at a finite k the thickness of the diffusional
boundary layer at the leading edge differs from zero by
virtue of boundary condition (37).

Atk — oo and bx, « 1, one can see from equations
(33) and (43) that

= 4_3\/733\/i_1+_17rl/3_

Nu
2n N\ 3 x1?

(44)

Then the ratio f/y can be estimated by comparing
the above result with asymptotically correct equation
(29)

(43)

; [3\/3 r(1/3)]3_ 3

"l 3 ] T reny

Y
The function describing the distribution of the
dimensionless local mass-transfer intensity can now be
expressed as
Bki/D
Nu= / . (46)
3/1—(1—B%)exp[ - 9T ~3(2/3)bx..]

All of the above reasonings are also valid for heat
and mass transfer in tubes and channels of an arbitrary
cross section, ! being the tube diameter or the equiva-
lent rectilinear channel diameter. The above cor-
relations allow calculation of heat and mass transfer in
the entry region of the channels both for Pr > 1and for
a stabilized velocity profile. At a great distance from
the entrance, the dimensionless mass-transfer intensity
is stabilized and can be calculated by formula (32)
which becomes equation (33) at k = oc.

It should be noted here that in accordance with
formula (32) the stabilized Nu number at a finite rate of
the wall reaction may considerably differ from Nu,, at
k — o0. This may partially account for the difference in
Nu,, numbers obtained in some electrochemical ex-
periments [26, 27] and in the experiments dealing with
dissolution of the inner tube surface [28-31]. This
point of view is to some extent supported by the
Canadian scientists [32, 33]. These authors have paid
much attention to the surface cleanness of the
electrochemical sensors and have almost eliminated
the above divergence. Also in Fig. 4 of [26] one can
observe an existing difference (increasing with Re
number) between the experimental data and theoreti-
cal relation (29) obtained at k = . The partial
blocking of the electrochemical sensor surfaces is
believed to require introduction of the “effective rate™
of the electrochemical reaction to allow for this
blocking in appropriate calculations.

The function describing the relative increase of heat
and mass transfer in the entry region can be easily
obtained from formulae (46) and (32) as

1
Nu . .(47)
Nu,  3/1—(1-B*exp[ —9T *(2/3)bx.]
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Table 2
Nu calc.
Reference Re x 1073 G k= k=009cm/s Nug,
26 75 091 « 4070 3720 3150
27 50 0.20 2840 1970 2150
30 032 1770 1410 1400
20 0.46 1245 1050 1000
10 0.83 690 625 550

.
1074 10°3 107% o'

bx,

F1G. 5. Nomogram of Nu/Nu, = f(G/i/B, bx.,). [Calcu-
lated by formula (47).]

The nomogram for the results of calculation according
to this formula is given in Fig. 5. It is seen that at

G 2 10 3/b the desired ratio is satisfactorily approxi-
mated by the formula obtained from equation (47) at
G- w

Nu 1
Nu,, i/l —exp(—3.62bx,) .

(48)

This formula is more simple than the equation sugges-
ted in [34] and better fits the detailed analytical
solution derived there; the deviation does not exceed
1%.

At a finite G in the vicinity of the leading edge, the
correlation

N 1+1.21G2/b
! = * /\/ atbx, « 1/4 (49)
Nu,  3/143.62(B~*—-1)bx,

is valid.

Therefore, the curves for Nu/Nu, in logarithmic
coordinates approach, at bx, — 0, the following
asymptote (which is more noticeable at small G)

Nu/Nu,, = l+1.2lG/i/B at bx, « 1/4.  (50)

The stabilization length of the local mass-transfer
intensity depends on the chosen accuracy of r,%
= r,/100. It is clear, however, that at a rather small G, it
1s pointless to discuss the stabilization length of local
mass transfer, since in the range of the chosen accuracy
the ratio Nu/Nu,, can be considered constant over the
whole length. At G — o, the unknown length is
estimated from the equation

bl,, =1+0.28In(1/r). (51

The correlation obtained from formula (47) to

describe the relative increase of the sensor length-

averaged mass-transfer intensity is of the form

(Nuy _ 1 {1 [1+utu? (1-B)
Nu, 121bl, |6 | 1+B+B* (1—u)

L ( rcta L+2u arctan I+ 23)} (52)
V3 V3 V3

where

u=3/1—(1—B%exp(—3.62bl,).
The results found by this formula are presented in
Fig. 6. It is clear from Fig. 6 that at finite G, the above
ratio in logarithmic coordinates approaches the

asymptote (Nu)/Nu, =1+ 1.21G/i/b that, nat-
urally, coincides with the asymptote of Nu/Nu, .

]
10°¢ 10 102 10! 1
bl-

F1G. 6. Nomogram of { Nu}/Nu,, = f(G/i/E, bl.).
[Calculated by (52).]

Just as in the case of the local mass-transfer
intensity, it can be assumed that at rather small G,
relation (52) remains constant along the film sensor
within the chosen accuracy and hence it is no sense in
discussing the length necessary for { Nu) stabilization.
For greater values of the parameter G, however, the
problem is of considerable interest and the unknown
length may be estimated by the formula

bL,, =20(1 - B3)/r, (53)

Without loss of accuracy, one can use the approxi-

mate equation
'

{Nu) _ 1 (54)
Nu,  3/1—(1-B%exp[ 8T 323)bl, ]

instead of more complicated equation (52).

The comparison (see Fig. 7) of the predictions
performed by formula (52) (in assumption that G =
and b = 10~?) with the experimental data [28-30] on
dissolution of the inner tube surface shows that the
available data do not contradict the theory. A signi-
ficant scatter of the experimental data does not allow a
more definite conclusion. Note that in some of the
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SNU>
Nu,,

102

103 0
L

Fi1G. 7. Comparison of calculations by (52) with experimental
data for G = o0. 1, {28];2,[29,30].

experimental data [29, 30] obtained at Re = 10* (I,
= 610-650) and covering a range of the Prandtl
numbers between 930 and 97 000, the ratio ( Nu)/Nu,,
tends to decrease slightly with the increase of Pr. This
tendency cannot be explained by the above theory that
predicts the relation <{Nu)/Nu, = constant at /,
= constant independent of Pr and is completely
inconsistent with the theory that uses an assumption
on the proportionality of the eddy diffusivity within the
viscous sublayer to the fourth power of the distance
from the wall. According to this theory, the ratic
{Nu>/Nu, should alsoincrease with Pr at constant [, .
The comparison of the results of the developed
theory with the only known to us experimental work
[27] describing the experimental electrochemical in-
vestigation of local mass-transfer intensity in the mass-
transfer entry region is difficult for two reasons. The
one is that the author of [27], assuming for the local
mass-transfer coefficient the value averaged over the
sensors of finite width (1, 2 and 3 mm), related it to the
distance x from the start of the mass-transfer entry
region to the central point of the sensor. This leads to
greater values of the mass-transfer coefficients in the
region of large mass flux gradients which are charac-
teristic of small x’s. The recalculation of the experimen-
tal data (being quite possible in the framework of the
developed theory) is, however, deprived of any mean-
ing due to the second factor which is difficult to be
taken into account. This is the influence of packings
that insulate the local mass-transfer sensor from the
rest portion of the tube. Despite their small (in
absolute measurements) thickness (~0.1 mm) they
can essentially damage the diffusion boundary layer,
which is very thin in these conditions, and lead to
noticeable errors of the same sign in the mass flux
quantities.
The comparison between the predictions for k = 5
x 107*m/s, b = 0.5 x 10~ * and the experimental elec-
trochemical data on the averaged rates of turbulent
transfer to a tube wall in the mass-transfer entry region
[26] is presented in Fig. 8. Quite satisfactory agree-
ment between theory and experiment is readily seen
there. The value of k= 5x 10"*m/s, used in the
calculation, has been found in the following way. On a
small ring the diffusional boundary layer is so thin that

x
\"«\\x
04 N \ h
o
\X\\ Ny x\&
\x \x x\‘x
A x| X ™ N
&I k\"bf“ S
v % 2 N 4
N ~, Y ’\\'x..
x\\ \X\’s\‘x..\N
x\§\~ Dl '_::
Xl | b o
}\X’ "
1073
1072 10! | 10

L/d

Fi1G. 8. Comparison of theoretical calculations with experi-
mental data [26] for length-averaged rates of turbulent
transfer in the mass transfer entry region (Pr = 2400,k = 0.5
x 1073 m/s, b = 0.5 x 1073),
Nos. 1 2 3 435
Rex 1073 75 40 20 10 5

the turbulent diffusion is negligible and mass transfer
can be calculated with the aid of equation (54) which
may be rewritten in the form

I\'3 (Nuy (1P
<St>(2) " RePr (E)
368 x107%./283/d
 3/B3+054-1077,

B = 1/(1+2740k/u,), |, = (I/d)Re./1/8. (5%)
At k — oo it must be
N 1541073

Comparison between the above formulae and the
experimental data gives the value of k.

Solid line 2 is plotted in Fig. 9, borrowed from [26],
for formula {55) at k=5 x 107*m/s and l/d = 0.1.
One can see that the above theory explains the existing
difference between the experimental results and
theoretical calculations assuming k = oo [see formula

(56)]
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FiG. 9. Comparison of mass-transfer data [26] for small
rings with equations (55), (56). 1: calculated by formula (56)
atk - o0;2:calculated by formula (55)atk = 5 x 10" *m/s;

1

10.

11,

12.

. P. Grassman, N.

vertical bars denote the range of experimental data.
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TRANSFERT MASSIQUE TURBULENT AVEC UNE REACTION CHIMIQUE
DU PREMIER ORDRE SUR UNE PAROI A Pr » 1

Résumé—On étudie le transfert massique entre un écoulement turbulent et une paroi plane et lisse sur
laquelle se développe une réaction chimique du premier ordre. On analyse le cas extréme d'une vitesse de
réaction infiniment élevée (concentration constante de mélange passif sur la paroi). On considére
successivement trois cas possibles. Pour les plaques trés courtes qui ne peuvent étre décrites par
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I'approximation de couche limite, une solution est obtenue sur ordinateur par la méthode aux différences
finies. Cette solution couvre complétement les effets de bord (diffusion meléculaire longitudinale d'un
mélange passif) et de surface (réuction chimique & vitesse finie) qui sont essentiels pour les plaques de petite
longueur. Pour les plagues qui peuvent étre étudiées par 'approximation de la couche limite en négligeant
I'effet du transfert massique turbulent, la solution analytique est obtenue. Les résultats numériques sont
comparés avec ceux obtenus par la méthode de 1a surface également accessible et par I'approximation de
couche limite. La limite inférieure de la dimension de plaque est atteinte quand les effets de bord peuvent étre
négligés. Ces résultats sont directement applicables a la théorie des détecteurs a film de petite dimension, a
électrodiffusion ou thermique (avec revétement), mais aussi a la conception des mesures locales de frottement,
de transfert de chaleur et de masse entre une surface lisse et un fluide.

TURBULENTER STOFFUBERGANG MIT EINER CHEMISCHEN REAKTION
ERSTER ORDNUNG AN EINER WAND BEI Pr > 1

Zusammenfassung-—Der Stoffiibergang zwischen einer turbulenten Stromung und einer ebenen glatten
Wand mit einer chemischen Reaktion erster Ordnung an deren Oberfliche wurde untersucht. Em
Extremfall einer unendlich hohen Reaktionsrate (konstante Konzentration passiver Beimischung an der
Wand) wurde analysiert. Drei mogliche Fille werden nacheinander betrachtet. Fiir sehr kurze Platten,
die nicht mit der Grenzschichtniherung beschrieben werden konnen, wurde eine Losung mit einem
Rechenprogramm nach der Methode finiter Differenzen gefunden. Diese Ldsung mit einem Rechen-
programm nach der Methode finiter Differenzen gefunden. Diese Losung laBt Effekte zu, die fiir kurze
Platten ziemlich wesentlich sind und zwar sowohl fiir den Rand (longitudinale, molekulare Diffusion eines
passiven Zusatzes) als auch fiir die Oberfliche {endliche Umsatzrate einer chemischen Reaktion). Fiir
solche Platten, die mit der Grenzschichtnéherung unter Vernachldssigung der Wirkung des turbulenten
Stoffiibergangs gedeckt werden konnen, ist die analytische Losung der Aufgabe abgeleitet worden. Die
numerischen Daten werden mit denen verglichen, die nach der Methode der gleichmissig zugénglichen
Oberfliche und nach der Grenzschichtniherung gewonnen wurden. Als Ergebnis kann die untere Grenze
der PlattengroBe, bei der die Randeinflilsse vernachlissigt werden diirfen, festgelegt werden. Diese
Ergebnisse konnen unmittelbar auf die Theorie der Elektrodiffusions-Miniatursensoren und der
thermischen Miniatursensoren (mit Beschichtung) und dem Mikrofilmprinzip angewendet werden.
Diese Sensoren werden dazu verwendet, um Ortliche Werte der Reibung und des Wirme- und
Stoffiibergangs an eine glatte. feste Wand in einem Fluid zu messen.

TYPBYJIEHTHBIA MACCOIMNEPEHOC C XUMHWYECKON PEAKLIMEHW MEPBOIO
NMOPAAKA HA CTEHKE ITPH Pr>1

ARBOTAUMS — PaccMaTpHBaeTest MacconepeHoc mMexay TypOyNneHTHBIM NOTOXOM XHAKOCTH M IO~
cKol r1aaxol CTeHKOH, Ha NOBEPXHOCTH KOTOPON NPORCXOANT XHMHYECKAaR PEaKUnsa IEPBOTo nopsa-
%a. AHAAMIMPYETC TaKKE MpeacsibHbiA ciiy4all OeckonewHo 60/biNOH CKOPOCTH peakuMH, Koraa
KOHUEHTPALMSA NACCHBHON MPHMECH Ha CTEHKE PHHAMACT NOCTOAHHOE 3HAYCHHE.

IMocnenoBaTensHo pazbuparorcs TPU BO3MOXHBIX Citydas. [ind O4YEHb KOPOTKUX IMAACTHH B
YCIIOBHAX, KOTAa NPUG/IMKEHHE NOTPAHUYHOTO CJIOS HEMPMMEHHMO, € AOMOLUbI0 DBM koHEYHO-
Pa3HOCTHBIM CIOCOBOM TMOJTYHEHO PELIEHHE, B KOTOPOM B MOJIHOH MEpE yUHTHIBAKOTCA KaK KpacBblie
(npononbHas moneky/nspHas Auddy3us NacCUBHON NPHUMECH), TAK M MNOBEPXHOCTHblE IddexThi
{KXOHEYHan CKOPOCTh XWMHHYECKOH peaKuHm), BeCbMa CYLICCTBCHHbIE AN NNACTHH MANOH ANMHbL
Jins KOpOTKHMX TNACTHH, KOTNa HONYCTMMO WCIIONB30BATh NPHO/MXEHME NOrPAHKYHOIO CJOs M,
O/IHOBPEMEHHO, npeHelbpeyb BKIAZOM TYPOYACHTHOrO MEXAHH3MA MEPEHOCA, TOAYHEHO aHaMMTH-
yeckoe peliende 3ajgauM. [laHHbie 4HMCIEHHBIX PAacuyeToB CPABHMBAIOTCH C PE3Y/LTATAMH aHaNM3a,
NpPOBEAEHHOrO B NPHONMKEHAM NOTPAHMYHOIO CJIOK H METOAOM PaBHOAOCTYIHON MOBEPXHOCTH.
Ha OCHOBE TaKOro CpaBHEHHs yIaeTcs YCTAHOBHTHL HHMXHIOK TPaHKLy 061acTH pa3’MepoB IIACTHH,
B XOTOpO} JOMYCTHMO NpeHebperaTs BjHAHUeM KpaeBbix pdeKTOB. DTH pe3ynbTaThl MOryT ObiTh
HENOCPEACTBEHHO MCIIONB30BAHbl B TEOPHH AMEKTPONMGQY3HOHHBIX H TEIUIOBbIX (C MOKPHITHEM)
fJIEHOYHBIX AATYHKOB BEChbMA MAJbiX PA3MeEpOB, NPEAHA3HAYCHHBIX 1N M3MEPEHHA JNOKAJbHBIX
XapaKTEPUCTHK TPEHUS, TENIO0- M MaCCONEPEHOCa Ha TBEPAYIO [/1aAKYIO CTEHKY, OMBIBAEMYO IOTOKOM
KHAKOCTH.

B cayuae UTHHHBIX IACTHH, /st KOTOPLIX CYIECTBEHHYIO DOJIb UIPAET TypOyNeHTHbIR MEXaHU3M
MacconepeHoca, Noay4eHo MpocToe HPHGIMKEHHOE pelwieHMe 3azayn. YUncnopeie 3HaYCHHA napa-
METPOB, BXOAALIMX B 3TO PElUCHNKE, BLIGHPATNCh TaKUM 06pa3oM, 4ToOb1 OHHM COBMANK C NOJTYYEH-
HBIMKM paHee TOYHBIMH ACHMITOTHMECKHME pe3yibTaTaMH BONH3M TepenHell KPOMKM NNAcTHHB! U
pranu ot Hee. TTonyveHHbie Pe3ybTaTsl TO3BOAKIOT, B YACTHOCTH, ONPEACIIUTE JUIRHY Ha4aibHOTO
YHaCTKa KaHa/la TIPOM3BONLHOIO CEUCHUA, HeoOxomumyro ans cTabunwszaumy Macconepesoca, ¥
MpeAIOKHTL APOCThIC GOpMYIbl A8 PAcyeTa NOKAibHON ¥ OCPEAHCHOR 1O ANMHHC KaHANa MHTCH-
CHBHOCTH MaccOOOMEHAa Ha HAYaibHOM yvacTke. OTd GOPMYyJbl CPABHMBAKTCH C MMCIOIIHMACH B

JIMTEPATYPE ONMBITHBIMHA IaHHBIMH.



