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Abstract-Mass transfer between a turbulent fluid flow and a flat smooth wall with a first-order chemical 
reaction on it has been investigated. An extreme case of an infinitely high reaction rate (constant 
concentration of passive admixture on the wall) has been analysed. 

Three possible cases are considered consecutively. For very short plates which cannot be described by the 
boundary-layer approximation, a computer solution has been obtained by the finite difference method. This 
solution completely allows for both the edge (longitudinal molecular diffusion of a passive admixture) and 
surface (finite rate of a chemical reaction) effects which are rather essential for small-length plates. For those 
plates which can be interpreted by the boundary-layer approximation with the neglect of the effect of 
turbulent mass transfer, the analytical solution to the problem has been derived. The numerical data are 
compared with those obtained by the method of the equally accessible surface and in the boundary-layer 
approximation. As a result, the lower region limit of the plate sizes can be established where the edge effects 
may be neglected. These results may be directly applied to the theory of electrodiffusional and thermal (with 
coatings) small-size film sensors, designed for measuring local characteristics of friction. and heat and mass 
transfer to a smooth solid wall in a fluid flow. 

Considering long plates for which turbulent mass transfer is ofimportance, a simple approximate solution 
of the problem is obtained. The numerical parameters involved in this solution are thus chosen to fit the 
asymptotic results obtained close to the leading edge of the plate and far from it. These results make it 
possible to determine the mass-transfer entry region in the arbitrary cross section channel and to suggest 
simple formulae for calculating the local and channel length-averaged mass transfer intensity in the entry 

region. These formulae are checked by the reported experimental data. 

NOMENCLATURE 

r(1/3) k 1”3pr2,3 

= v&-(2/3) % + 

thermal diffusivity ; 

first coefficient of the Taylor 
expansion of Kij; 

first coefficient of the Taylor 
expansion of K,, ; 
passive admixture concentration : 
= 9b1, ; 
tube diameter; 

molecular diffusivity ; 
Green function of equation (6); 

= k ~~213 ; 

U* 

platexidth ; 

=$J;(X,O,, 
local mass flux on the plate surface : 

= k/u, J%; 

Kij, 

k, 
1, 

1 

LI: 
-L 

%j> 

tensor components of eddy 
diffusivity ; 
surface reaction rate; 

plate length or equivalent channel 
diameter; 

stabilization length for Nu ; 
- 

= 1, fi = luJ&D ; 

stabilization length for (Nu) : 

exponent at the first term of the Taylor 
expansion of Kij with the factor b, 

different from zero ; 
exponent at the first term of the 
Taylor expansion of K,, ; 
chosen accuracy [%] ; 

= J,L113, normalized concentration 
gradient at the plate surface; 
velocity at the point considered ; 

= JG, friction velocity ; 

instantaneous components of the 
velocity vector in x- and y-directions; 
longitudinal coordinate relative 
to the leading edge ; 

. 
;~~~,mennonless longtudmal 

normal-to-the-wall coordinate : 
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dimensionless normal-to-the wall 
coordinate ; 
= 4’+/6(x); 

dimensionless quantities defined 
by formula (40); 
Euler’ gamma-function ; 
concentrational boundary-layer 
thickness ; 

CO--c; 
= -, dimensionless concentration ; 

CO 

dynamic viscosity : 
kinematic viscosity ; 

X 
= -, 

1 
dimensionless longitudinal 

coordinate ; 
density; 
wall shear stress; 
confluent hypergeometric function ; 
constant defined by formula (43); 

= 5, Nusselt number : 

0 

= v/D, Prandtl number ; 
d/v, Reynolds number. 

Subscripts and superscripts 

fluctuation (the difference between 
the instantaneous quantity and its 
corresponding mathematical 
expectation) ; 

W, wall conditions ; 
-, mathematical expectation ; 
( ), length averaging; 
% ) stabilized conditions; 
+, quantity dimensionalized by the wall 

parameters u, and v ; 
0, infinity conditions. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a rettangular plate h wide in the field of 
uniform shear stresses. Let the plate length in the flow 
direction be 1 cc h, so that the edge effects in the 
direction perpendicular to the flow can be neglected. 
Assume that in a fluid flow around the sensor there is a 
uniformly distributed passive (i.e. not affecting the flow 
dynamics) admixture. The x-axis is along the flow, 
while y is normal to the wall. Then, the steady-state 
diffusion equation is of the form 

where prime< indicate fluctuations, i.e. the difference 
between the instantaneous and their correspondine 

mean values. The concentration of a passive admixture 
c(x, y) at a large distance from the plate is constant 

(;(x, co) = co; (:(--co,y)=c, (2) 

and on the plate surface the first-order reaction takes 
place 

D ; (x, 0) = 
0 at x<O or x>l 

kr’(x,O) at O< x,< 1. 
(3) 

At large values of the reaction rate constant (k + KJ), 
the latter equation transforms into an ordinary boun- 
dary condition for the constant wall concentration? (0 
< x < I,O) = c,. At Pr >> 1, the resistance to mass 
transfer is completely due to the viscous sublayer of the 
turbulent boundary layer, for which the velocity 
distribution can be approximated by the linear func- 
tion 

ii(y) = yuf/v. (4) 

Equation (1) with boundary conditions (2) and (3) 
describes a broad range of problems which are impor- 
tant not only for chemical engineering but also for the 
theory of film (thermal? and electrodiffusional) sensors 
being nowadays widely used in practice. For the 
thermal film element, k entering into equation (3) 
represents thermal resistance of the insulating coating 
of the heated film which is an unseparable part of the 
sensor when used in fluid flows. For the electro- 
diffusional sensor, the constant k is the rate of the 
electrochemical reaction of working ions on the sensor 
surface. Here, the effective value of k may also show an 
existing state of the sensor surface.. The use of bulky 
installations with a large amount of electrolyte em- 
ployed for several days (sometimes even weeks) pro- 
hibits such cleaning of the sensor surface that allows 
necessary calculations relied only on the kinetic laws of 
electrochemical reaction and the laws governing ion 
transfer through the sensor boundary layer. One can 
suppose that because of incomplete cleaning of the 
sensor, a uniform layer exerting constant resistance to 
mass transfer is formed on its surface. An ion flux 
through such a layer is proportional to the difference of 
concentrations at both boundaries of this layer. It is 
readily seen that this extra resistance effect can be 
easily allowed for by introducing a certain fictitious 
rate of the electrochemical reaction different from the 
one characteristic of purely diffusional overstress con- 
ditions. Later on, for the sake of clarity, we shall speak 
of the electrochemical diffusional sensor, for the oper- 
ational principles of the diffusional sensor and 
constant-temperature thermal film element are practi- 
cally identical. 

t Further arguments are only true of the thermal film 
element of such a small extent in the flow direction that the 
thickness of the thermal layer formed on its surface does not 
exceed that of the viscous sublayer of the turbulent boundary 
layer (i.e. of the sublayer where the velocity distribution obeys 
equation (4) with sufficient accuracy). It should be added that 
the heat is considered here to be passive admixture (i.e. only 
low-intensity heat fluxes are analysed). It is supposed, as 
usual, that the mechanism of turbulent heat transfer is exactly 
the same as that of passive admixture. 
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For the last two decades, the theory of these sensors 
has been extensively developed by German [l, 21, 
American [3-71, Soviet [S-lo], French [ll] and 
Japanese [12,13] scientists. However, in nearly all of 
these works the diffusional sensor theory is studied in 
the frame of the boundary-layer approximation, and 
the rate of the appropriate electrochemical reaction is 
considered infinitely great. 

In respect of such a statement of the problem, the 
following remarks can be made. The sensors of small 
extent in the direction of the averaged flow, most of all, 
satisfy the aims of local measurements of the 
boundary-layer characteristics. Still more important is 
the reduction in the size of the sensor designed for 
determining the fluctuation characteristics of the 
boundary layer, when the sensitivity of a measuring 
element decreases sharply with the increase of its size 
[9]. It is known, meanwhile, that the boundary-layer 
approximation is too crude for the study of a real 
concentration distribution near the sensor edges, i.e. in 
the region of a sharp change in wall conditions, where 
the molecular diffusion in the directions parallel to the 
wall may bring about an appreciable error in the 
calculations based on this approximation. This extent 
of the error is most significant for small-size sensors. 

To the above remarks the following should be 
added. As the electrode surface is not equally ac- 
cessible and the reaction rate is finite, the con- 
centration of reacting charged particles on the sensor 
edge surfaces ranges from the initial value to zero ; that 
is, some portion of the electrode is not polarized. Since 
the effect of the finite reaction rate is also most 
pronounced near the diffusion sensor edges, these two 
effects should be considered jointly. 

In the literature available, the estimates were made 
only of the above effects taken separately. The numeri- 
cal analysis of the edge effects for the small-size 
completely polarized sensors was performed by Ling 
[4], while the concentration distribution along the 
sensor surface was investigated within the framework 
of the boundary-layer approximation in [2, lo]. 
Neither of these effects was regarded at all in analytical 
studies of the sensitivity of the electrochemical sensor 
to the fluctuations in the viscous sublayer of the 
turbulent boundary layer [7,9-11, 131. 

We shall therefore make first a detailed con- 
sideration of steady-state mass transfer between a 
turbulent fluid flow and a small-size plate with the 
first-order chemical reaction on the wall. In this 
case, because of the edge effects, the boundary-layer 
approximation is not applicable (one cannot assume 
that a2$3x2= 0) but, on the other hand, the layer of 
diffusional disturbance produced by the plate is so thin 
that the effect of turbulence in the viscous sublayer can 
be neglected. 

[a(u:c’)/ax = 0 and a(t4;dyay = 01. 
All the results obtained with this assumption may be 
naturally applied to a laminar flow. 

Then we examine long plates, for which the effect of 
turbulent fluctuations in the viscous sublayer of the 

turbulent boundary layer starts to show itself ap- 
preciably in the bulk of the flux to their surfaces, but 
the edge effects are negligible. 

2. CONCENTRATION FIELD AND MASS FLUX 

TO A SHORT PLATE 

In the conditions considered, the concentration field 
near the plate is determined by the equation 

with boundary conditions (2) and (3). 
The problem has been solved on the computer by 

the successive iteration method applied earlier by Ling 

[4] for k = 03. The range of 5 < L < ~5000 and 0.01 
< k Q cc, is analysed. The numerical results are given 
in Figs. l-4 and Table 1. 

The lines given in Fig. 1 represent constant con- 
centration in the vicinity of plates of constant dimen- 

sionless length (L = $6) calculated at different dimen- 
sionless rates of a surface reaction 0.01 <k < co. The 
boundary of the diffusional layer 0 = 0.01 is also 
shown in this figure. It is clear that the thickness of the 
thermal boundary layer is finite at the leading edge. 
However, the effect of the longitudinal molecular 
diffusion provoking a change in concentration before 
the plate becomes less significant with the decrease of 
k. Behind the plate, a significant “diffusional wake” is 
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I 

0 
I 

0 

I 

0 
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FIG. 1. Concentration field close to a short plate (L = J50) 
at different dimensionless rates of surface reaction K. 
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observed which may cause introduction of important 
corrections into the correlation measurements perfor- 
med with tilm sensors [I?]. It is worth noting that even 
at large relative rate of a surface reaction, k = 10, the 
electrodiffusional sensor is incompletely polarized (Q,,, 
# 1) over its length. This situation is illustrated in Fig. 
2 plotting the distribution of dimensionless surface 

Define the Green function F(x. JJ, <) of differential 
equation (6) by solving it under the boundary con- 
ditions with a single surface concentration jump at the 
point 5 = .X 

c,(x) = 
{ 

1 at O<x<< 

0 at <<.X<l 

0 
I 

0 
0 I 2 

X/l 

FE. 2. Distribution of wall concentration over the plates of 
different length. Solid lines. numerical results; dashed lines, 

calculations in the boundary-layer approximation. 

concentration over the different-size plates, 5 < L 

< l:‘%5G. and at various reaction rates, 0.01 < k 
< x. One can readily see from these plots that 
polarization of the electrodiffusional sensor increases 
with its length ant! ii, which agrees with the existing 

idea that the importance of the edge effects should fall 
as fast as the length of film sensors increases. The 
concentration field close to the centre of a fairly large 
plate is believed to be well determined by the 
boundary-layer approximation 

at boundary conditions 

i(r. z) = “0; i;(O,,l*) = c,: 
? 

D ;; (s > 0.0) = k?(x > 0.0). (7) 
(‘1‘ 

The expressions obtained are convenient to estimate 
the asymptotic behaviour of the solution at A3< x 1 
and A3< a 1 but are of little use for A”< 5 1. At A”< 
- 1, the approximate method of the equally accessible 

and C(X. ‘X ) = 1. 
It is evident that in this case 

0, Y, 4) = I 1 
at <<.Y</ 

at 0 < s < <. 

(8) 

(9) 

Using the superposition principle for approximating 
an arbitrary distribution function, c,~(x), we can 
represent theconcentration field, c(.x, J.), in the vicinity 
of the sensor as the Duhamel integral 

where the integral equation for the ion concentration 
distribution on the electrode surface under the con- 
ditions considered will be of the form [ 14. 151 

An approximate solution to equation (11) is given in 
[lo]. The second-kind Volterra integral equation can 
be exactly solved by the Laplace transformation. It can 
be conveniently expressed in terms of the confluent 
hypergeometric functions 

o,(t)= f: (--l) 
In+1 

n=l f( ‘P] 
(A4”3)“’ 

(,3,Zf”3 

= l-exp(-A3E)+ r(4/3) 

x &l,$; -A3s”) 

(A3f)“” 
--Ti5/_1)&1,3; -,4”(). (12) 

Hence the sensor length-averaged surface con- 
centration can be easily found 

exp(-A3)- I 
(0,) = ~+---~~--.-.-+~~&lll;~: -A3f 
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Table 1. Comparison of the results obtained (a) by the computer; (b) by the boundary-layer approximation; (c) by the method 
of equally accessible surface 

- 
5 Jso 10 $00 J=j 

L 
K (8,) (0 042 (9 (0,) (9 (Rv> (9 (k> (9 

a 1.000 0.893 1.000 0.871 1.000 0.852 1.000 0.820 1 .OOo 0.809 
b 1.000 0.807 1.000 0.807 1.000 0.807 1.000 0.807 1.000 0.807 
C 1 .OOo 0.807 1.000 0.807 1.000 0.807 1.000 0.807 1.000 0.807 

0.949 0.852 0.955 0.832 0.961 0.816 0.971 0.799 0.981 0.793 
10 z 0.955 0.773 0.960 0.777 0.964 0.781 0.972 0.787 0.981 0.793 

C 0.955 0.762 0.960 0.768 0.964 0.772 0.972 0.779 0.981 0.787 

a 0.661 0.572 0.690 0.594 0.713 0.613 0.769 0.643 0.834 0.680 
1 I- 0.690 0.529 0.711 0.555 0.732 0.578 0.778 0.627 0.836 0.680 

C 0.691 0.527 0.715 0.547 0.737 0.566 0.785 0.607 0.841 0.656 

: 
0.159 0.143 0.178 0.157 0.199 0.172 0.246 0.211 0.327 0.277 

0.1 0.164 0.143 0.183 0.157 0.201 0.172 0.248 0.212 0.327 0.278 
c 0.190 0.139 0.203 0.152 0.228 0.166 0.278 0.204 0.369 0.276 

: 
0.0185 0.0167 0.0211 0.0187 0.0243 0.0207 0.0321 0.0272 0.0456 0.0393 

0.01 0.0193 0.0168 0.0217 0.0188 0.0243 0.0210 0.0315 0.0273 0.0456 0.0395 
c 0.0232 0.0167 0.0260 0.0187 0.029 1 0.0209 0.0377 0.0272 0.0543 0.039 1 

surface [ 151 may be used, that gives 

e = ~3~51’3 
w 1 + l-(2/3)~l<“~ ’ 

<e,>=1-3 
3 

2Al-(2/3) + .4’r2(2/3) 

(14) 

- ASrj(2,3) ln[l +,WWl. (15) 

In Fig. 2 the dotted line shows the calculation results 

by formula (12). As one should expect, this solution 
describes poorly the real concentration field in the 
immediate vicinity of the leading and trailing edges, 
but agrees well with the numerical calculation for the 
middle area. As follows from the general boundary- 
layer theory, the width of this area increases with the 
plate length. It is worth noting that the existing 
difference between the analytical and numerical solu- 
tions, i.e. smaller predicted values of 8, at the leading 
edge and larger ones at the trailing edge, makes it 
possible to assume that the plate length-averaged (Q,) 
obtained from an exact calculation and in the 
boundary-layer approximation should not severely 
differ even for relatively short sensors. Table 1 shows 
that this is really true: even for the shortest plates (L 
= 5), the difference does not exceed 8%. 

The longitudinal molecular diffusion has a more 
essential effect on the surface concentration gradients. 

As follows from Leveque’s solution [16], the 
boundary-layer thickness at the leading edge is zero 
and the concentration gradient is then governed by 

tends to infinity at X + 0 and decreases monotonically 
with increasing X. The numerical results giving a real 
picture of a normalized concentration gradient distri- 

bution along the sensor length are presented in Fig. 3 
where the dotted line shows the results obtained by the 
boundary-layer approximation. 

The computer calculations (Fig. 4) indicate that at 
the leading edge of the plate, the concentration 

FIG. 3. Distribution of dimensionless wall concentration 
gradients over the plates of ditferent length. Solid lines, 
numerical results ; dashed lines, calculations in the boundary- 

layer approximation. 
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theoretical results for the Ieading edge region lie above 
the computer data, while the picture is reverse for the 
trailing edge region. One can therefore suppose that 
the sensor integral means should not differ con- 
siderably. The data summarized in Table 1 support 
this idea. For K 2 10. the deviations (neglecting the 
regions of X < 10m3) are of a constant sign, and the 
difference in the results becomes more noticeable. At K 

+ cc, we have the equation (S) = <@2f(4:3) 
= 0.807, by virtue of formula (16). 

For estimation of the appropriate correction for the 
normalized dimensionless surface concentration gra- 
dient, S,, predicted by the boundary-layer theory, the 
approximation equation 

FIG. 4. Dimensionless mass flow close to the leading edge of 
the plate. Solid line. calculation in the boundary-layer 

approximation. 

gradient assumes a constant value which depends on 
the rate of a chemical reaction. For the finite K, this 
follows directly from boundary condition (3). Unlike 
equation (16). at K = cc, in accordance with the 

numerical calculation for .wJ,/,~ < 0.02, we have 

(17) 

Such a difference does not affect the total mass flux 
appreciably but is of importance for the theory of film 
sensor measurements of the boundary-layer fluc- 
tuation structure. There is good reason to believe that 
the structure of the concentration field near the leading 
edge (being here of the smallest thickness and, hence, of 
the smallest persistence) affects decisively the sensor 
characteristics in the high-fr~uency region. 

An increase in the concentration gradients near the 
trailing edge of the sensor is of greater significance. 
Following the boundary-layer approximation, at finite 
K for the normalized concentration gradient on the 
plate surface, we have 

s = L”3J, = L”3K(l-(t,). (18) 

At low K. a short electrodiffusional sensor is not 
practically polarized at all (0,” - 0), so that S = L”‘K, 
and does not change along the plate. In this case, the 
integral mean (S> 

(S) = j--q; J,(X)d?: = ~*‘3K(l-(~~))(19) 

is very accurately described not only by the boundary- 
layer approximation but also by the method of the 
equally accessible surface even for short plates. This 
should not be astonishing if you remember the above 
situation of decreasing longitudinal concentration 
gradients with K and the contribution of longitudinal 
molecular diffusion. Also note that at K & 1, the 

t The latter result is inconsistent with the results of some 
recent analytical studies [f?, 181. The reasons for such a 
deviation are anafysed in detail in [19]. 

(S) =(S,.) +!Fexp( -4;) (20) 

can be used. 
For K < 0.1, the correction is insignificant at any 

practically interesting L. The accuracy of the approxi- 
mation suggested is 2:6 in the whole range of L and K. 

The local and integral dimension~~s mass-transfer 
coefficients on a short plate can be easily estimated by 
the value of the normalized surface concentration 
gradient 

Nu = Sl,2’3. (Nu) = (S} L.’ J. (21) 

3. MASS TRANSFER TO A LONG PLATE 

Considering long plates, we should treat incomplete 
equation (l), provided that a*~/&? = 0, because in 
this case the edge effects of molecular conductility 
should not, as is shown above, play any role. To solve 
the equation derived, different ways of its closing are 
used, the simplest of which, assuming a linear re- 
lationship between the turbulent admixture flux and 

- -. 
mean concentration gradient of admixture rr;?, $r’. 
goes far back to Boussinesq 1201. In a general aniso- 
tropic case, this assumption is of the form 

(22) 

where the eddy diffusivity tensor Coefficients fKij) 
depend, in general, on the ~,~~oordinat~. In the 
majority of the published works using this approach, it 
is supposed (usually without any grounds) that X, rare 

the major axes of the tensor I(,. i.e. K,, = 0. K, = 0. 
Here either K,, = 0 is assumed or the estimate of K,,, 
= K,, is introduced. The assumption on the diagonal 
nature of the turbulent diffusivity tensor relies on the 
situation that the directions of the axes are determined 
by the conditions of a hydrodynamically stabilized 
tube flow. This argument, however, is not strict [21]. 
Indeed, in line with [Zl], we may show, for example, 
that the longitudinal component of turbulent mass 
transfer due to the transverse concentration gradient is 
different from zero (i.e. K,, # 0). 
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Let us now assume that the components of the 
tensor K, depend only on the radial position and do 
not depend on the longitudinal coordinate. This 
hypothesis can be maintained by a decisive role of flow 
dynamics, which in this case is believed to be com- 
pletely stabilized, so that the tensor components of the 
eddy momentum diffusivity (i.e. eddy viscosity tensor) 
are independent of s. In the depth of the viscous 
sublayer of the turbulent boundary layer, where the 
total resistance to mass transfer is concentrated at 
Pr >> 1, the tensor components of the eddy diffusivity 
are described, with appropriate accuracy, by their first 
terms of the corresponding Taylor power expansion 

Using the continuity equation, we can show that nyl 

and nyy 2 3, while nxx and II,). >, 2. The value of I+,). = n 

seems to be of special importance. Based on the 
analysis suggested in [22], assume that n = 3. 

In view of the above, equation (l), when expressed in 
terms of the dimensionless variables of the boundary- 
layer theory, 

takes the form 

x l+% =O. (25) 
( ) 

For a long plate, CY = m/L cc. 1, and the analysis 
may therefore be restricted to the cc-zero approxi- 
mation 

^ 
-9XY g = 0, (26) 

e( - cc, Y) = 0; QX, 60) = 0; 

= KQ%[B(X,O)-l] at O<X< L 

0 at X < 0, X > L. 
(27) 

It is quite obvious that equation (26) includes only one 
tensor component of the eddy diffusivity K,, which can 
be estimated with an appropriate accuracy [22]. 
Things are more intricate with other components K,,, 

K,, and Kyx, no information being available in 
literature on their behaviour in the viscous sublayer of 
the turbulent boundary layer. 

With regard for equation (26), the limit laws of the 
local mass transfer intensity on the plate are easily 
obtained for short and long distances from the leading 
edge of the plate. 

In the first case discussed in detail above, the effect of 
turbulent mass transfer can be neglected. According to 
formulae (12), (16), (18) and (21) at finite k 

and 

Nu = r(1/3) xi’3 
~~-$---,,~~ (29) 

x+ 

atk=cc. 
For X >> 1, when the concentration field close to the 

plate varies slightly along x, equation (26) assumes the 
form 

&[ (I+>xY3);j = 0. (30) 

Its solution at boundary conditions (27) has the form 

Hence, for the flow region analyzed, we obtain at finite 
k 

(32) 

and at k = m 

NM, = ++Pr? 
To solve equation (26) at any x, the approximate 

moment method [23,24] is used. This method has 
been successfully applied for deriving integral momen- 
tum and energy relationships (see, for example [25]). 
Require that equation (26) be “on the average” 
satisfied. With this end in view, rewrite equation (26) of 
the g-zero approximation and boundary conditions 
(27) as follows 

)‘+ ax+ “=$[ (;+by:)$j. (34) 

B(x+,co) =o;~(x+,o)=~Pr[e(x+,o)-I]. 
I 

(35) 
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After substituting the variable z = y +/6(x +) assume 
that dimensionless concentration profiles of passive 
admixture may, with sufficient accuracy, be considered 
affine-similar in -7 [23,24]. Then an ordinary differen- 
tial equation of the first order with respect to the 

boundary-layer thickness 6(x+) and of the second 
order with respect to Q(z) is of the form 

(36) 

with the boundary conditions 

[I( #X ) = 0, O’(0) = b % Pr[QO)- 11 (37) 
1 

d(0) = 0 at k -+ sx. (38) 

Here the point and prime mean differentiation in x+ 
and Z, respectively. On integrating equation (36) from 

0 to I and setting the expression obtained equal to 
zero, we arrive at the equation 

where 

yPrfi’$ + /lbPrh3 -t 1 = 0 (39) 

;‘= - ! 
(40) 

Equation (39) is an approximate correlation replac- 

ing original equation (26). Naturally, the agreement 
between the below results and accurate correlations is 
controlled by the parameters y and p, i.e. by the proper 

choice of the function 0(z). The previous formulae, 
being asymptotically correct, can be of use here. 
Indeed, the comparison of the relevant asymptotic 
expansions of the approximate solution with the 
accurate formulae permits not only the required 

relationships between the constants ~1 and B to be 
obtained, but also the choice of 0(z) to be estimated. 
Thus, we can get an idea on the accuracy of the 

approximate solution and, thereby, eliminate, to a 
certain extent, the most essential imperfection of the 
approximate methods. 

The solution of differential equation (39) takes the 
form 

9: lJhPriib+l u2&, 

1 

fi 

---=--_x+. (41) 
: /JhPrn(O, l-u3 1’ 

It is easy to see that in our notations 

$jG%(x+, = Nu,/Nu(x+). (42) 

By using equations (28), (32) and (41). one can find 

The upper limit of the integral tends to zero at k 
-+ cc, i.e. 6(O) + 0 in accordance with equation (29), 

but at a finite li the thickness of the diffusional 
boundary layer at the leading edge differs from zero by 
virtue of boundary condition (37). 

At k -+ x and bx, << 1, one can see from equations 
(33) and (43) that 

3J3 ;-I+ 
NuE-3 

J 

- __ pr”3, 
2n 3/3 x$” 

(44) 

Then the ratio p/y can be estimated by comparing 

the above result with asymptotically correct equation 

(29) 

The function describing the distribution of the 
dimensionless local mass-transfer intensity can now be 

exptessed as 

NLL = ~~i;f9T3(2,3)tx,1. (46) 
All of the above reasonings are also valid for heat 

and mass transfer in tubes and channels of an arbitrary 
cross section, I being the tube diameter or the equiva- 

lent rectilinear channel diameter. The above cor- 
relations allow calculation of heat and mass transfer in 
the entry region of the channels both for Pr >> 1 and for 
a stabilized velocity profile. At a great distance from 

the entrance, the dimensionless mass-transfer intensity 
is stabilized and can be calculated by formula (32) 
which becomes equation (33) at k = SC. 

It should be noted here that in accordance with 
formula (32) the stabilized Nu number at a finiterate of 
the wall reaction may considerably differ from NM,, at 
k + m. This may partially account for the difference in 

Nu, numbers obtained in some electrochemical ex- 
periments [26,27] and in the experiments dealing with 

dissolution of the inner tube surface [28-311. This 
point of view is to some extent supported by the 
Canadian scientists [32, 331. These authors have paid 
much attention to the surface cleanness of the 
electrochemical sensors and have almost eliminated 
the above divergence. Also in Fig. 4 of [26] one can 
observe an existing difference (increasing with Rr 
number) between the experimental data and theoreti- 
cal relation (29) obtained at k = X. The partial 
blocking of the electrochemical sensor surfaces is 
believed to require introduction of the “effective rate” 
of the electrochemical reaction to allow for this 
blocking in appropriate calculations. 

The function describing the relative increase of heat 
and mass transfer in the entry region can be easily 
obtained from formulae (46) and (32) as 

Nu 1 
--zz___ -: .(47) 
NUT 2’1 -(l -B3)exp[-9rS3(2/3)bx,] 
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Table 2 

Nil talc. 
Reference Rex 10m3 G k= k = 0.09 cm/s Nu,.~ 

26 15 0.91 1 4070 3720 3150 

27 50 0.20 2840 1970 2150 
30 0.32 1770 1410 1400 
20 0.46 1245 1050 1000 
10 0.83 690 625 550 

FIG. 5. Nomogram of Nu/NII, = S(G/&$ hx,). [Calcu- 
lated by formula (47).] 

The nomogram for the results of calculation according 
to this formula is given in Fig. 5. It is seen that at 

G 2 10 $ the desired ratio is satisfactorily approxi- 
mated by the formula obtained from equation (47) at 
G-tcr, 

Nu 1 

Nn, J 3 1 -exp(-3.62bx+) 
(48) 

This formula is more simple than the equation sugges- 
ted in [34] and better fits the detailed analytical 
solution derived there; the deviation does not exceed 

1%. 
At a finite G in the vicinity of the leading edge, the 

correlation 

Nu 1 + 1.21G/$ 
-= 
Nn, v1+3.62(B-‘- l)bx+ 

at bx, << l/4 (49) 

is valid. 
Therefore, the curves for Nu/Nu,, in logarithmic 

coordinates approach, at bx, -+ 0, the following 
asymptote (which is more noticeable at small G) 

Nu/Nu, = 1 + 1.21G/$ at bx, K l/4. (50) 

The stabilization length of the local mass-transfer 
intensity depends on the chosen accuracy of r,‘% 
= rJ100. It is clear, however, that at a rather small G, it 
is pointless to discuss the stabilization length of local 
mass transfer, since in the range ofthe chosen accuracy 
the ratio Nu/Nu, can be considered constant over the 
whole length. At G + co, the unknown length is 
estimated from the equation 

bl,, = 1+0.28ln(l/r,). (51) 

The correlation obtained from formula (47) to 
describe the relative increase of the sensor length- 

averaged mass-transfer intensity is of the form 

(52) 

where 

u= vl-(l-B3)exp(-3.62bI+). 

The results found by this formula are presented in 
Fig. 6. It is clear from Fig. 6 that at finite G, the above 
ratio in logarithmic coordinates approaches the 

asymptote (Nu)/Nu, = 1 + 1.21G/v& that, nat- 
urally, coincides with the asymptote of Nu/Nu , 

b1- 

FIG. 6. Nomogram of (Nu)/Nu, = f(G/$, bl,). 
[Calculated by (52).] 

Just as in the case of the local mass-transfer 
intensity, it can be assumed that at rather small G, 
relation (52) remains constant along the film sensor 
within the chosen accuracy and hence it is no sense in 
discussing the length necessary for (Nu) stabilization. 
For greater values of the parameter G, however, the 
problem is of considerable interest and the unknown 
length may be estimated by the formula 

bL,+ = 20(1 -B3)/rr (53) 

Without loss of accuracy, one can use the approxi- 
mate equation 

I 
(W 1 
-= 
Nu, v1-(1-B3)exp[-$I-3(2/3)bI+] 

(54) 

instead of more complicated equation (52). 
The comparison (see Fig. 7) of the predictions 

performed by formula (52) (in assumption that G = cc 
and b = 10A3) with the experimental data [28-301 on 
dissolution of the inner tube surface shows that the 
available data do not contradict the theory. A signi- 
ficant scatter ofthe experimental data does not allow a 
more definite conclusion. Note that in some of the 
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FIG. 7. Comparison of calculations by (52) with excremental 
data for G = co. 1, [28] ; 2, [29,30]. 

experimental data [29,30] obtained at Re = lo4 (I, 
= 610-650) and covering a range of the Prandtl 
numbers between 930 and 97 000, the ratio (Nu)/Nu, 
tends to decrease slightly with the increase of Pr. This 
tendency cannot be explained by the above theory that 
predicts the relation (Nu>/Nu, = constant at I+ 
= constant independent of Pr and is completely 
inconsistent with the theory that uses an assumption 
on the proportionality of the eddy diffusivity within the 
viscous sublayer to the fourth power of the distance 
from the wall. According to this theory, the ratio 
(Nu)/Nu , should alsoincrease with Pr at constant I,. 

The comparison of the results of the developed 
theory with the only known to us experimental work 
[27] describing the experimental electrochemical in- 
vestigation of local mass-transfer intensity in the mass- 
transfer entry region is difficult for two reasons. The 
one is that the author of [27], assuming for the local 
mass-transfer coefficient the value averaged over the 
sensors of finite width (1,2 and 3 mm), related it to the 
distance x from the start of the mass-transfer entry 
region to the central point of the sensor. This leads to 
greater values of the mass-transfer coefficients in the 
region of large mass flux gradients which are charac- 
teristic of small x’s The recalculation of the experimen- 
tal data (being quite possible in the framework of the 
developed theory) is, however, deprived of any mean- 
ing due to the second factor which is diflicult to be 
taken into account. This is the influence of packings 
that insulate the local mass-transfer sensor from the 
rest portion of the tube. Despite their small (in 
absolute measurements) thickness (- 0.1 mm) they 
can essentially damage the diffusion boundary layer, 
which is very thin in these conditions, and lead to 
noticeable errors of the same sign in the mass flux 
quantities. 

The comparison between the predictions for k = 5 
x lo-’ m/s, b = 0.5 x 10e3 and the experimental elec- 

trochemical data on the averaged rates of turbulent 
transfer to a tube wall in the mass-transfer entry region 
[26] is presented in Fig. 8. Quite satisfactory agree- 
ment between theory and experiment is readily seen 
there. The value of k = 5 x 10-4m/s, used in the 
calculation, has been found in the following way. On a 
small ring the diffusional boundary layer is so thin that 

t/d 

FIG. 8. Comparison of theoretical ~IeuIations with experi- 
mental data [26] for length-averaged rates of turbulent 
transfer in the mass transfer entry region (Pr = 2400, k = 0.5 

x 1Om3 m/s, b = 0.5 x 10m3). 
Nos. 12 3 45 
Rex 10-j 75 40 20 10 5 

the turbulent diffusion is negligible and mass transfer 
can be calculated with the aid of equation (54) which 
may be rewritten in the form 

(st)(“!!“3 = gyy 

3.68 x ~0-4~~ 
=II__ _-_ 

3 B3 +0.54.10-31, 

B = l/(1 +274Ok/u,), I, = (l/d)Re&% 

At k + co it must be 

(55) 

'I 113 

(St) 2 = 0 
1.54 x 10-3 

Re5"2 ' (56) 

Comparison between the above formulae and the 
experimental data gives the value of k. 

Solid line 2 is plotted in Fig. 9, borrowed from [26], 
for formula (55) at k = 5 x 10e4m/s and l/d = 0.1. 
One can see that the above theory explains the existing 
difference between the experimental results and 
theoretical calculations assuming k = co [see formula 
(56)]. 
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Re 

FIG. 9. Comparison of mass-transfer data [26] for small 
rings with equations (55), (56). 1: calculated by formula (56) 
at k = co ; 2: calculated b! formula (55) at k = 5 x lo-“ m/s: 

vertical bars denote the range of experimental data 
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TRANSFERT MASSIQUE TURBULENT AVEC UNE REACTION CHIMIQUE 
DU PREMIER ORDRE SUR UNE PAR01 A Pr >> 1 

R&m-On ttudie le transfert massique entre un &coulement turbulent et une paroi plane et lisse sur 
laqoelle se dtveloppe une rtaction chimique du premier ordre. On analyse le cas extrime d’une vitesse de 
reaction infiniment Clev&e (concentration constante de mtlange passif sur la paroi). On considtre 
successivement trois cas possibles. Pour les plaques tres courtes qui ne peuvent &tre d&rites par 
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I’approximation de couche limite, une solution est obtenue sur ordinateur par la mithode aux differences 
finies. Cette solution couvre completement les effets de bord (diffusion meleculaire longitudinale d’un 
melange passif) et de surface (reaction chimique a vitesse liniel qui sont essentiels pour les plaques de petite 
longueur. Pour les plaques qui peuvent etre itudiCes par I’approxim~Ition de la couche limite en nigligeant 
l’effet du transfert massique turbulent, la solution an~Ilytique est obtenue. Les r~sultats num~riques sont 
comparis avec ceux obtenus par la methode de la surface Cgalement accessible et par ~approximation de 
couche limite. La limite inferieure de ladimension de plaque est atteinte quand les effets de bord peuvent etrc 
negliges. Ces resultats sont directement apphcables a la thtorie des dttecteurs a lilm de petite dimension, ;i 
Clectrodiffusion ou thermique (avec revetementl, mais aussi a la conception des mesures locales de frottement. 

de transfert de chaleur et de masse entre une surface lisse et un fluide. 

TURBULENTER STOFFUBERGANG MIT EINER CHEMISCHEN REAKTION 
ERSTER ORDNUNG AN EINER WAND BEI Pr >> 1 

Zusammenfassung-Der Stofftibergang zwischen einer turbulenten Stromung und einer ebenen glatten 
Wand mit einer chemischen Reaktion erster Ordnung an deren Oberflache wurde untersucht. Em 
Extremfall einer unendlich hohen Reaktionsrate (konstante Konzentration passiver Beimischtlng an der 
Wand) wurde analysiert. Drei mb;gIiche FZRe werden nacheinander betrachtet. Fur sehr kurze Platten, 
die nicht mit der Grenzschichtn~erung beschrieben werden konnen. wurde eine Losung mit einem 
Rechenprogramm nach der Methode fmiter Differenzen gefunden. Diese Losung mit einem Rechen- 
programm nach der Methode finiter Differenzen gefunden. Diese Losung IPBt Effekte zu, die fur kurze 
Platten ziemlich wesenthch sind und zwar sowohl fur den Rand (longitudinale, molekulare Diffusion eines 
passiven Zusatzes) als such fur die Oberflache (endliche Umsatzrate einer chemischen Reaktion). Fur 
solche Platten, die mit der Grenzschichtniiherung unter VernachlLsigung der Wirkung des turbulenten 
Stoffdbergangs gedeckt werden kiinnen, ist die anaIytische Losung der Aufgabe abgeteitet worden. Die 
numerischen Daten werden mit denen verglichen. die nach der Methode der gleichmiissig zug~g~ichen 
Oberfllche und nach der Grenzschichtnaherung gewonnen wurden. Als Ergebnis kann die untere Grenze 
der PlattengrGBe, bei der die Randeinfltisse vernachhissigt werden diirfen. festgelegt werden. Diese 
Ergebnisse konnen unmittelbar auf die Theorie der Elektrodiffusions-Miniatursensoren und der 
thermischen Miniatursensoren (mit Beschichtung) und dem Mikrofilmprinzip angewendet werden. 
Diese Sensoren werden dazu verwendet, urn ortliche Werte der Reibung und des W&me- und 

Stotftibergangs an eine glatte, feste Wand in einem Fluid zu messen. 

TYPlSYJlEHTHblti MACCOI-IEPEHOC C XMMM‘lECKOfi PEAKUMEfi HEPBOI-0 
IlOPCrflKA HA CTEHKE f’IPki PrS I 

hr~omum - PaCCMaTpABaeTC% MacconepeHoc Memay T~~~~JWHTH~IM I-IOTOKOM XOI~KOCTW w nno- 
CKOik r~~K0~ CTeHKOt?, Ha nO~pXHOcTU KOTOl?Oif IIpOIICXOitUT XnMUqeCKaK ~KI.IUfl IlepBOr0 nOpII& 
Ka. AH~n3npyeTc~ TaKWZ npe~e~bHbI~ CSIy’Iai? 6eCKOHeYHO 6OJIbIIIOti CKOt,OCTn n&?aKnnn, KOrna 
KOHUeHT0anHX naCCnBIiO& IIpIiMeCn Ha CTeHKe n0nIinMaeT IIOCTOIIHHOe 3HaYeHAe. 

DOCJIeJIOBaTeJIbIiO paa6npatoTca TPH 603MOHCHblX CJIy’Ian. ,&%I O’IeIib KOPOTKKX nJIaCTRH B 
ycnoenax, Korna npe6nnxetwe norpaHurHor0 Cnon HenpwMeHnMo, c n0~0u.wo 3BM KoHeYHO- 
pa3HOCTHbiM CnOCO6OM IlOJIy’IeHO peIIIeHne, B KOTOpOM B IIOJIHOti Mepe y’InTbIBaIOTCR KaK KpaeBbIe 
(IIpOltOJIbHaR MOfleKyflRpHaII &.I~y3MII IIaCCHBHOii npnMeCn), TaK If nOI%pXHOCTHble 3@&KTbI 
(KOHe'fHaR CKOpOCTb XilMn'ieCKOii ~aKL&Si), BeCbMa CymeCTIjeHHbIe ,ZIJuI ITJIaCTHH MaJIO& JIJIAHbi. 
&nK K~POTKWX nnacTnn, Korna AonycT~Mo ncnonb30BaTb np~6nn~eH~e norpaK~qHor0 cnox w, 
OEHOBl3eMeHH0, nperte6peqb BKJIaAOM Typ6yneHTHOrO MeXaHn3Ma Ilel%ZIOCa, llOJly=IeHO aHaJlUTN- 
wcKoe peueHHe 3anawi. AaHHbIe wicnehnibIx pacwroB cpai=wiBaicrTcrr c pe3ynbTaTaMn anaRn38, 
npOBeJIeHHOr0 B npu6numeHnu nOrpaHUYHOr0 CJIOR W MeTOnOM 0aBHOLIOCTynHOti nOBepXHOCTn. 
Ha OCHOBe TaKOro CpaBHeHuR ynaercs yCTaHOBnTb HHEHIOK) rpaHnuy o6nacTw pa3MepoB nnacTWH, 
n KOTOpOfi JIOnyCTnMO npeIie60eraTb EiJIHflHIieM KpaeBbIX 3IhIheKTOB. 3TW pe3yJIbTaTbI MOryT 6bITb 
HeIIOCfWlCTBeHHO WCITOJIb30BaHbI B TeOpHn 3JIeKTpOJIn#y3nOHHbIX Ii TenJIOBbIX (c nOK0bITHeM) 
~“~eHoqnbrx zIafsnKon necbMa ManbIx pa3MepoB, npe~Ha3HaqeHHbIx zbn.nr n3Mepennff noIcanbHbIx 
xapa~epncTnK TpeHnri, renno- n naacconepeiioca Ha TBepnyto rnanrym CT~HKY, 0MbInaeMym noToKoM 
mnxKocTn. 

B cnyvae &IINHHbIX IIJIaCTHH, LWI KOTOpbIX CyIIIeCTBeHHyIO nOJIb IIrpaeT Typ6yneHTHbifi MeXaHIi3M 
Macconepenoca, nonyseno npocToe npu6nn)KeHHoe peuIeIine 3aAaYn. %iCJIOnbIe 3HaYeHAII napa- 
MeTpOB, BXOZI5ImNX B 3TO peIIIeHne, BbI6ispanHCb TaKnM o6pa3oM, ‘IT0661 OHH COBnaJIH C nOJIyYeII- 
WhIMI, paHee TOYHbIMH aCWMnTOTW’IeCKHMB pe3ynbTaTaMw B6JII438 nepenHeB Kp0~Kn nnacTnHbt II 
Bnanw OT nee. FIonyveIisbie pe3ynbTaTbI fI033onzzor, B YacTnocTn, 0npeneneTb nnnny naYanbHor0 
ysacTKa KaHana npo~3nonbHoro ce5eHnn, H~6XO~nMy~ ima cTa6nnn3aun~ MacconepeH~a, Ii 
npe,nnomnTb np0cTbIe qtOpMy,TbI nnst paclreTa noKanbHoR Ii OCpeJIHeHOfi no AnWHe KaHaJIa UHTeH- 
CIiBHOCTn MaCCOO6MeHa Ha Ha‘IaJIbHOM y’IaCTKe. 3Tn +OpMyJibI CpaBHHBaIoTCfl C nMeIOIWMnCR 8 

JlnTepaTypeOIIbITHbIMH LIaHIibIMn. 


